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Optical sensor presentations

TUESDAY

D3: Continuous Monitoring: Innovations in Applications and Instrumentation

E5: Nutrient Monitoring and Modeling to Restore and Protect Freshwaters

WEDNESDAY

G5: Quantifying the Source and Fate of Nutrients

I2: Assessing the Effects of Prolonged Drought and Wildfires on Water Quality and Habitat

I3: Megadata – Working with Continuous Time-Series Water Quality Data

THURSDAY

L6: Spatial and Temporal Approaches for Monitoring

M8: Dissolved Organic Matter – What, Why, How

POSTERS



Optical sensors
• Measure the interaction between light and optically-active constituents in water
• Photometers mainly sold as UV nitrate analyzers (Hach, Satlantic, s::can, TriOS)
• Fluorometers mainly sold for algal pigments, fluorescent DOM (FDOM), oils, fuels, etc.



Benefits
 24/7 data collection

 Time dense data

 Real-time
opportunities

 Wide range of
constituents

 Remote access

 No wet chemistry

 Few moving parts

 Highly sensitive

Mississippi River at Baton Rouge



“You can observe a lot just by watching”
- Yogi Berra
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Pellerin et al., 2009

Assessing diurnal nitrate variability in the San Joaquin River, Crows Landing, CA

“You can observe a lot just by watching”
- Yogi Berra
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Applications

 Monitoring concentrations

 Drinking water applications

 Wastewater discharge

 Refining loads

 Coastal eutrophication

 TMDLs

 Interpreting sources and processes

 Identify key contributing areas

 Quantify aquatic retention

 Flow path tracers



Mississippi River Nitrate
• Strong correlation between in

situ and discrete nitrate
(depth- and width-integrated)

• Monthly loads vary by up to
30%

• Dynamic nature, not well
correlated with Q

• Estimated error ~ ± 4% for
daily loads, ± 1-2% monthly
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• Strong correlation between in situ and discrete nitrate (downstream at Chain Bridge)
• Dynamic at multiple time scales
• Estimated error ~ ± 4%

Potomac River – short-term variabiity
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• Strong correlation between in situ and discrete nitrate (downstream at Chain Bridge)
• Dynamic at multiple time scales
• Estimated error ~ ± 4%
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Potomac River – short-term variabiity



FDOM as a proxy for mercury
“Surrogate” measurements for high resolved methylmercury
(MeHg) flux from a tidal wetland, Browns Island, CA

Bergamaschi et al., 2011



 Guidelines and methods
 Guidance documents for new sensors

 Instrument characterization

 Continued interactions with manufacturers

 Better estimates of uncertainty

Turbidity (FNU)
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Effect of particle interference on FDOM sensor measurements

(Some) Next steps



Peak A
(humic-like)
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(Some) Next steps

 Next generation
sensors
 Target low UV fluorescence

as unique indicator of
wastewater presence

 Indicators for the potential
presence of pathogens and
bacteria (S. Corsi, WI WSC)

Short Course: “Dissolved
Organic Matter – What,
Why, How”

Thursday, 3:30, Session M8

G. Aiken, B. Bergamaschi
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Roy Bridgeman - USFS

www.climatecentral.com

Hurricane Sandy

11 billion gallons of untreated
and partially treated wastewater

Rim Fire

4th largest wildfire in California.
in the primary drinking water
supply for ~ 2 million people

Deepwater
Horizon

McNutt et al., 2011; US Coast Guard

Release of 4.9 million
barrels of oil into the

Gulf of Mexico

(Some) Next steps
 Event response

 Wastewater

 Oil and grease

 Nutrients

 Sediments (amount and
type)

 Disinfection by-products

 ?



Acknowledgements
 CA WSC Biogeochemistry Group (Brian Bergamaschi, Bryan Downing,

JohnFranco Saraceno)

 Funding (NAWQA/NASQAN, Office of Water Quality, Climate Effects
Network, Climate and Land Use Program, Bureau of Reclamation, …)

 USGS Support and Collaboration (Donna Myers, Bill Wilber, Charlie
Crawford, Bob Gilliom, Paul Frederick, Joel Blomquist, Joe Bell, Paul Capel,
Matt Miller, Doug Burns, Roger Fujii, Jessie Garrett, and many more…)



Optical sensor presentations

TUESDAY

D3: Continuous Monitoring: Innovations in Applications and Instrumentation

E5: Nutrient Monitoring and Modeling to Restore and Protect Freshwaters

WEDNESDAY

G5: Quantifying the Source and Fate of Nutrients

I2: Assessing the Effects of Prolonged Drought and Wildfires on Water Quality and Habitat

I3: Megadata – Working with Continuous Time-Series Water Quality Data

THURSDAY

L6: Spatial and Temporal Approaches for Monitoring

M8: Dissolved Organic Matter – What, Why, How

POSTERS


	Applications of optical sensors for high frequency water quality monitoring and research in rivers and streams
	Optical sensor presentations
	Optical sensors
	Benefits
	Slide Number  5
	Slide Number  6
	Slide Number  7
	Applications
	Mississippi River Nitrate
	Potomac River – short-term variabiity
	Potomac River – short-term variabiity
	Slide Number  12
	(Some) Next steps
	(Some) Next steps
	(Some) Next steps
	(Some) Next steps
	Acknowledgements
	Optical sensor presentations

